

Circulation changes in the Amundsen Basin from 1991 to 2015 revealed from distributions of dissolved ²³⁰Th

Ole Valk¹, Michiel M. Rutgers van der Loeff¹, Walter Geibert¹, Sandra Gdaniec², S. Bradley Moran³, Kate Lepore⁴, Robert Lawrence Edwards⁵, Yanbin Lu⁶, Viena Puigcorbé⁷, Nuria Casacuberta^{8,9}, Ronja Paffrath¹⁰ William Smethie¹¹, Matthieu Roy-Barman¹²

20 Correspondence to: Ole Valk (ole.valk@awi.de)

Abstract. This study provides dissolved and particulate ²³⁰Th and ²³²Th results as well as particulate ²³⁴Th data collected during expeditions to the central Arctic Ocean on ARK-XXIX/3 (2015) and ARK-XXII/2 (2007) (GEOTRACES sections GN04 and GIPY11, respectively). Constructing a time-series of dissolved ²³⁰Th from 1991 to 2015 enables the identification of processes that control the temporal development of ²³⁰Th distributions in the Amundsen Basin. After 2007, ²³⁰Th concentrations decreased significantly over the entire water column, particularly between 300 m and 1500 m. This decrease is accompanied by a circulation change, evidenced by a concomitant increase in salinity. Potentially increased inflow of water of Atlantic origin with low dissolved ²³⁰Th concentrations leads to the observed depletion in dissolved ²³⁰Th in the central Arctic. Because atmospherically derived tracers (CFC, ³He/³H) do not reveal an increase in ventilation rate, it is suggested that these interior waters have undergone enhanced scavenging of Th during transit from the Fram Strait and the Barents Sea to the central Amundsen Basin. The ²³⁰Th depletion propagates downward in the water column by settling particles and reversible scavenging. Taken together, the temporal evolution of Th distributions point to significant changes in the large-scale circulation of the Amundsen Basin.

¹Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany

²Stockholm University, Department of Geological Sciences, 106 91, Stockholm, Sweden

³College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA

⁴Mount Holyoke College, South Hadley, MA 01075, USA

⁵University of Minnesota, Minneapolis, MN 55455, USA

⁶Nanyang Technological University, 639798, Singapore

⁷Center for Marine Ecosystem Research, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia

⁸Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich, Switzerland

⁹Institute of Biogeochemistry and Pollutant Dynamics, Environmental Physics, ETH Zurich, 8092 Zurich, Switzerland

^{5 &}lt;sup>10</sup>Max Planck Research Group for Marine Isotope Geochemistry, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129, Oldenburg, Germany

¹¹Lamont-Doherty Earth Observatory, Palisades, NY 10964-8000, USA

¹²Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA – CNRS – UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

© Author(s) 2019. CC BY 4.0 License.

1 Introduction

The Arctic Ocean is one of the most rapidly changing parts of the Earth's ocean-atmosphere system as a result of climate change. Underlying the potential anthropogenic changes is a large natural variability of the Arctic. Due to the limited observations in this extreme environment, establishing datasets that allow an assessment of its variability is important. Natural tracers of physical, chemical and biological processes provide an integrated description of the changing state of the system. They are therefore key tools to investigate processes, monitor environmental changes, and provide an observational baseline against which models can be tested.

1.1 Hydrography and Circulation patters of the central Arctic Ocean

The central Arctic Ocean is divided into the Amerasian Basin and Eurasian Basin by the Lomonosov Ridge (Fig. 1). The Gakkel Ridge separates the Eurasian Basin further into the Nansen Basin and the Amundsen Basin, while the Amerasian Basin is separated into the Makarov and Canada Basin by the Alpha-Mendeleev Ridge.

Water masses of the Arctic Ocean are commonly distinguished as five layers (Rudels, 2009). The uppermost low salinity Polar Mixed Layer (PML) varies in thickness between winter and summer, due to melting and freezing of sea ice. Salinity ranges from 30 to 32.5 (Amerasian Basin) to 32-34 (Eurasian Basin). Below the PML is a 100–250-m-thick halocline in which salinity increases sharply from approximately 32.5 to 34.5. The underlying Atlantic Layer is characterized in salinity and temperature by waters of Atlantic origin and is usually found between 400 m and 700 m water depth. Its salinity is 34.5-35. Intermediate waters down to 1500 m, with a salinity of 34.87-34.92, are still able to exchange over the Lomonosov Ridge. In contrast, deep and bottom waters differ between the Eurasian Basin (salinity: 34.92-34.945) and the Amerasian Basin (salinity: 34.92-34.96) due to the topographic barrier.

Atlantic waters from the Norwegian Atlantic Current enters the Arctic Ocean via the Fram Strait and the Barents Sea. Fram Strait Branch Water (FSBW) is supplied through the West Spitsbergen Current (WSC) (Rudels et al., 2012) (Fig. 1). Barents Sea Branch Water (BSBW) enters through the Barents Sea and consists of Atlantic water that undergoes strong modifications in Barents- and Kara Seas by cooling down and mixing with continental runoff and meltwater (Rudels et al., 2015). The BSBW enters the Nansen Basin through the Santa Anna Trough, where limited mixing with the FSBW occurs. Once in the polar ocean, surface waters follow wind driven ice motion (Aagaard et al., 1980), whereas deeper Atlantic water branches (FSBW and BSBW) flow cyclonically to the east forming a boundary current along the continental slopes of the Nansen and Amundsen basins.

BSBW (around approx. 1025 m depth, Tanhua, 2009) and FSBW (approx. 425 m) return in the Atlantic and Intermediate water layers along the Lomonosov Ridge towards Fram Strait (Rudels et al., 2013) (Fig. 1) and a second branch crosses the Lomonosov Ridge entering the Canada Basin following the Arctic Ocean Boundary Current (AOBC) (Rudels, 2009).

Deep waters of the Arctic Ocean have similar structure, with a thick intermediate layer stratified in temperature but with salinity almost constant with depth (Rudels, 2009). Yet, the Amerasian Basin deep water is warmer, saltier and less dense than

© Author(s) 2019. CC BY 4.0 License.

the Eurasian Basin Deep Water (EBDW) (Aagaard, 1981; Worthington, 1953). The deepest exchange of Makarov Basin water, part of the Amerasian Basin, occurs through a depression of the ridge, called the Intra-Basin with sill depth of approximately 1800 m (Björk et al., 2007; Jones et al., 1995; Björk et al., 2010). Water from the Amundsen Basin flows over the Lomonosov Ridge into the deep Makarov Basin and in the reverse direction through this pathway (Middag et al., 2009).

the Lomonosov Ridge into the deep Makarov Basin and in the reverse direction through this pathway (Middag et al., 2009). Another important component of the Arctic Ocean is the freshwater content, coming from the melting of sea-ice and from river runoff. The fresh water content of the central Arctic Ocean is currently at the highest level since the early 1980s, and is expected to increase in the future (Rabe et al., 2014) which could lead to a stronger stratification of the water column. This process is supported by sea ice decline, as observed in the Beaufort Gyre (Wang et al., 2018). Karcher et al. (2012) suggest a reversal in flow direction of Atlantic Water in the Canada Basin at intermediate water depths on basis of ¹²⁹I observations and modelling. This could lead to a decoupling of flow regimes in the Canada and Eurasian Basins and reduce exchange times between the two major basins of the Arctic Ocean (Karcher et al., 2012).

1.2 Particle Fluxes, shelf input and biological productivity

Biological productivity in the central Arctic Ocean and related particle fluxes are lower than in other oceans due to the perennial sea ice cover (Clark and Hanson, 1983). This is expected to change in the future when light limitation is relieved by sea ice retreat (Pabi et al., 2008). Arctic sea-ice extent is declining (Serreze et al., 2016) and ice is becoming thinner (Serreze and Stroeve, 2015). Biological productivity may increase and begin earlier in the year, at least in the Pacific part of the Arctic, depending on nutrient supply (Hill et al., 2017). Recent studies show that productivity is still low in the central Arctic Ocean, limited by both light and nutrient availability (Arrigo and van Dijken, 2015). Highest net community production (NCP) is found at the ice edge of the Nansen Basin and over the shelves, while the Amundsen Basin shows the lowest NCP (Ulfsbo et al., 2014). Apart from the possible effect on NCP, the declining sea-ice cover will also enhance ice derived particle fluxes (Arrigo et al., 2008; Boetius et al., 2013). The Arctic Ocean has the largest relative amount of shelves of all World Ocean, approximately 30% of area in total. Shelf sediments and large volumes of riverine input add trace metals and carbon among other terrestrial components to Arctic shelf areas, some of which are transported to the central Arctic by the Transpolar Drift (TPD) (Wheeler et al., 1997; Rutgers van der Loeff et al., 2018; Rutgers van der Loeff et al., 1995). On the basis of an increase of ²²⁸Ra supply to the interior Arctic Ocean, Kipp et al. (2018) suggested that the supply of shelf derived materials is increasing with a following change in trace metal, nutrient and carbon balances. Thawing permafrost and subsequent increasing coastal erosion (Günther et al., 2013) may increase terrestrial input to the central Arctic Ocean (Schuur et al., 2013; Schuur et al., 2015).

1.3 Th as a tracer of water circulation and particle fluxes

Thorium isotopes have been extensively used to study and model physical oceanographic processes, such as advection, water mass mixing and particle flux (Bacon and Anderson, 1982; Rutgers van der Loeff and Berger, 1993; Roy-Barman, 2009;

© Author(s) 2019. CC BY 4.0 License.

Rempfer et al., 2017). In seawater, 230 Th ($t_{1/2}$ =75380 yrs) is produced by the radioactive decay of dissolved 234 U. Without lateral transport by currents, the vertical distribution of 230 Th in the water column is controlled by reversible exchange with sinking particles and increases with depth (Bacon and Anderson, 1982; Nozaki et al., 1981). Deviations from a linear increase with depth profile of 230 Th (Bacon and Anderson, 1982) suggest that oceanic currents transport 230 Th away from the production area, or that ventilation, upwelling, or depth-dependent scavenging processes play a role for the 230 Th distribution in the water column (e.g., Rutgers van der Loeff and Berger, 1993; Moran et al. 1995; Roy-Barman, 2009).

²³²Th is known as a tracer for shelf/continental derived signatures (Hsieh et al., 2011), while ²³⁴Th serves as a tracer for particle flux (Moran and Smith, 2000).

1.3.1 ²³⁰Th in the Arctic Ocean

Several studies have addressed ²³⁰Th in the Arctic Ocean over the past decades. Yet several key points to understand removal processes of dissolved ²³⁰Th are not entirely understood and the sensitivity of dissolved ²³⁰Th to environmental changes is still not explained sufficiently.

Bacon et al. (1989) reported the first study of ²³⁰Th and ²³¹Pa in the Arctic in 1983 at CESAR Ice Camp, located at the Alpha Ridge. They hypothesized that scavenging of reactive elements in the central Arctic Ocean was significantly lower than in other parts of the world to explain the high ²³⁰Th concentrations observed at the Alpha Ridge and the northern Makarov Basin (Bacon et al., 1989).

Cochran et al. (1995) presented the first ²³⁰Th study for the Eurasian Basin. They showed that deep water in the central Nansen Basin has lower particulate and higher dissolved ²³⁰Th concentrations than near the slopes (Cochran et al., 1995).

Dissolved ²³⁰Th concentrations in the Nansen Basin were lower than those from the Alpha Ridge reported by Bacon et al. (1989). Residence times of dissolved ²³⁰Th were calculated to be 18-19 years in the central Nansen Basin and 10-12 years on the Barents Sea slope (Cochran et al., 1995).

Scholten et al. (1995) reported ²³⁰Th concentrations in the Nansen, Amundsen, and Makarov Basins. They found that the shallower EBDW is influenced by ventilation, in contrast to the deeper Eurasian Basin Bottom Water (EBBW). They suggested resuspension as the cause for the increased scavenging rates in the EBBW.

Edmonds et al. (1998), later confirmed by Trimble et al. (2004), showed that ²³⁰Th activities in the deep southern Canada Basin were much lower, and residence times correspondingly shorter, than observed by Bacon et al. (1989) at the Alpha Ridge.

Moran et al. (2005) reported surface sediment $^{231}Pa_{xs}/^{230}Th_{xs}$ from the Canada Basin. They provided new insights into the relevance of scavenging removal and the horizontal redistribution of these tracers as well as the fractionation between the low productivity, sea ice covered interior basins and the seasonally high particle flux areas at the margins. Low surface sediment $^{231}Pa_{xs}/^{230}Th_{xs}$ ratios were interpreted as a result of chemical fractionation of ^{230}Th and ^{231}Pa in the water column resulting in preferred ^{231}Pa export out of the Arctic. Almost all of the ^{230}Th produced in-situ (ca. 90 %) was estimated to be removed within

the Arctic by scavenging onto particles (Moran et al., 2005).

https://doi.org/10.5194/os-2019-49

Preprint. Discussion started: 14 June 2019

© Author(s) 2019. CC BY 4.0 License.

Ocean Science

Discussions

Roy-Barman (2009) presented a boundary scavenging profile model, showing that linear ²³⁰Th concentration profiles do not necessarily imply that circulation is negligible. They suggested that the difference between the Arctic and other oceans is a

considerable lateral transport of 230 Th from the interior to the margins.

Hoffmann et al. (2013) presented new ²³¹Pa_{xs}/²³⁰Th_{xs} data in well-dated sediment cores and suggested that the deep waters of

5 the Arctic is exchanged through the Fram Strait on centennial timescales.

Valk et al. (2018) showed that the deep Nansen Basin is influenced by volcanic and hydrothermal inputs that lead to scavenging

removal of ²³⁰Th over several years, at least episodically.

This overview shows that the regional distribution of dissolved ²³⁰Th in relation to particle fluxes and water mass residence

time is known to a certain degree, but the knowledge about temporal development of this tracer and the connected processes

is still very limited...

1.4 Motivation

Global warming is triggering profound changes in the ocean, and the Arctic Ocean is especially vulnerable to such

environmental forcing. Summer ice cover is rapidly declining, as are changes in the supply of terrestrial material (Günther et

al., 2013), particle flux (Boetius et al., 2013) and ocean circulation (Karcher et al., 2012). These developments are expected to

leave an imprint on the distribution of particle-reactive radionuclides, such as Th isotopes. A central motivation for this

GEOTRACES study is to use the Th isotopes to depict changes in circulation and particle fluxes in the Arctic Ocean from

1991 to 2015. The basis of this study is a time series consisting of natural radionuclide data from various previous studies

combined with new data from 2007 and 2015.

2 Methods

2.1 Sampling and analysis of Th in samples collected in 2007

Sea water samples were filtered directly from the 24 L CTD-Niskin® bottles into acid cleaned cubitainers (LDPE) using 0.45

μm pore size Acropaks[®]. Samples were collected in volumes of 1 L, 2 L, and 10 L and acidified with concentrated ultraclean

HNO₃. Samples for the analysis of total ²³⁰Th were taken without filtration. Analyses were performed at the University of

Minnesota, Minneapolis, following methods from Shen et al. (2003). Measurements were done using Inductively Coupled

Plasma Mass Spectrometry (ICP-MS, Thermo Finnigan, Neptune) equipped with a Secondary Electron Multiplier (SEM) and

a Retarding Potential Quadrupole (RPQ) energy filter.

2.2 Sampling and analysis of dissolved Th samples collected in 2015

Samples were filtered directly from the 24 L CTD-Niskin® bottles into cubitainers (LDPE) through 0.45 µm pore size

Acropaks[®] in volumes of 10 L (>2000 m) and 20 L (<2000 m), according to the expected concentrations (Nozaki et al., 1981).

 $https: \!\!/\!\!/doi.org/10.5194 \!/os\text{-}2019\text{-}49$

Preprint. Discussion started: 14 June 2019

© Author(s) 2019. CC BY 4.0 License.

Acropaks[®] were used for half of the cruise and then replaced by new ones. Subsequently water samples were acidified to a pH of 1.5-2 by addition of 1 mL (acid)/L (seawater) of concentrated double distilled HNO₃.

Preconcentration and analysis of ²³⁰Th and ²³²Th were performed following GEOTRACES methods in clean laboratories of the Alfred-Wegener-Institute (AWI), (Anderson et al., 2012).

Samples were spiked with ²²⁹Th and ²³⁶U, calibrated against the reference standard material UREM11, a material in radioactive equilibrium (Hansen et al., 1983), followed by addition of a purified Fe-carrier solution (FeCl₃). The next day, the pH of the samples was raised to 8.5 by adding double-distilled NH₄OH, to induce Fe(OH)₃ precipitation. After 72 h, when the Fe(OH)₃ had settled to the bottom of the cubitainer, the precipitate was transferred from the cubitainers to acid cleaned 1 L Teflon® bottles, after syphoning off the supernatant water. After dissolution of the sample in concentrated HCl, the pH was raised again to 8.5 to allow the Fe(OH)₃ precipitate and settle. The supernatant water was siphoned into acid cleaned 50 mL Falcon® tubes the following day. The samples were then washed by centrifugation four times at 4000 rpm for 12 minutes, where the supernatant was decanted before addition of new ultrapure Milli-Q® water. Finally, the precipitation was dissolved in concentrated HCl and evaporated to a drop (>10 µL) in an acid cleaned 15 mL Savillex® beaker. After evaporation, the fractions of Pa, Th, U and Nd were separated using chromatographic columns filled with anion exchange resin (AG1X8, 100-200 mesh) according to GEOTRACES methods (Anderson et al., 2012). All fractions were collected in acid cleaned 15 mL Savillex® beakers and columns were washed and conditioned before the samples were loaded onto the columns using concentrated HCl and HNO₃.

Procedural blanks for ²³⁰Th and ²³²Th were run with each batch of 10-15 samples. Average ²³⁰Th and ²³²Th blank corrections are 0.24 fg/kg and 0.003 pmol/L, respectively. At station 81, a sample (2000 m) was divided into two samples and resulted in different dissolved ²³²Th concentrations, probably due to Th attached to the walls of the original cubitainer. Here, an average value considering the volume amount for both parts of the divided samples was calculated.

2.3 Sampling and analysis of particulate ²³⁴Th samples collected in 2015

Particulate samples were taken using in-situ pumps (McLane and Challenger Oceanic). 268 L to 860 L seawater were pumped through a 142 mm ∞ , 0.45 μ m pore size Supor® (polyether sulfone) filter (Anderson et al., 2012). Filters were cut aboard for subsamples under a laminar flow hood using tweezers and scalpels. Subsamples (23 mm ∞) were dried, put on plastic mounts, covered with Mylar and aluminium foil and directly measured by beta decay counting of 234 Th ($t_{1/2} = 24.1$ days) for at least 12 h. Six months later, background measurements were performed at the AWI in Bremerhaven.

2.4 Model

20

The model of Rutgers van der Loeff et al. (2018) was used to analyze the downward propagation of a ventilation signal in the Atlantic layer by settling particles and radioactive ingrowth. The ²³⁰Th model is based on the reversible exchange model of Bacon and Anderson (1982) and Nozaki et al. (1981) and solved with programming language R. We first let the ²³⁰Th model run with the base parameters as given for the Amundsen Basin in Table 1 of Rutgers van der Loeff et al. (2018), but without

© Author(s) 2019. CC BY 4.0 License.

exchange with the Kara Sea, until dissolved ²³⁰Th reaches a linear steady state profile. We then simulate a ventilation of the intermediate water by introducing an exchange process down to 1500 m. A ²³⁰Th-free water mass is initially used to allow a rapid reduction of ²³⁰Th in this upper layer. The ²³⁰Th profile is determined over the full water column over time since the beginning of ventilation.

5 3. Results

10

15

 230 Th results are expressed as unsupported excess 230 Th (230 Th_{xs}); for simplification, hereinafter 230 Th refers to 230 Th_{xs}. Excess corrections were done following Hayes et al. (2015).

3.1 Dissolved ²³⁰Th in 1991, 2007 and 2015

Data obtained in 1991 by Scholten et al. (1995) constitute the baseline for the time series presented in this study (Fig. 2A). Dissolved ²³⁰Th activities increased with depth in the Makarov and Amundsen Basins (Scholten et al., 1995). ²³⁰Th concentrations in the Amundsen Basin (Sta. 173) were lower than in the Makarov Basin (Sta. 176) throughout the water column (Fig. 2A+C). The value observed at 2250 m in the Amundsen Basin (Sta. 309) formed a mid-depth minimum in 1991.

In the Amundsen Basin, concentrations of dissolved ²³⁰Th increased more or less linearly with depth, with a slight minimum at 2750 m (Fig. 2A). In the Makarov Basin, dissolved ²³⁰Th concentrations were again higher compared to concentrations observed in the Eurasian basins in 2007. They increased until 3000 m depth, with a slight decrease towards the deepest sample (Sta. 328, Fig. 2C). Station 400, located at the south eastern margin of the Eurasian Basin showed lower concentrations than the open ocean stations.

²³⁰Th concentrations in the Amundsen (Sta. 81, 117 and 125) and Makarov Basins (Sta. 96, 101 and 134) increased with depth in 2015. Concentrations in the Makarov Basin were up to three times higher than in the Amundsen Basin. The Makarov Basin data reveal significant internal differences in dissolved ²³⁰Th concentrations (Fig. 2C). The central Makarov Basin data (Sta. 101) have higher dissolved ²³⁰Th concentrations compared to stations located closer to the margins (Sta. 96 and 134).

3.2 Dissolved ²³²Th in 2007 and 2015

In general, the concentrations of dissolved ²³²Th from 2007 were close to concentrations observed in 2015. In 2015, dissolved ²³²Th concentrations observed in the Amundsen Basin showed a decreasing trend with depth. Surface concentrations were relatively high at station 117 (100 pmol/kg) and 125 (>200 pmol/kg). At station 81, dissolved ²³²Th showed a relatively constant depth distribution, where surface ²³²Th concentrations were lower compared to station 117 and 125. At stations 125 and 117 dissolved ²³²Th decreased as well slightly with depth, with station 117 showing a mid-depth maximum at 2000 m (Fig. 2B). 2007 values (station 309) decreased with depth until 2500 m and then slightly increase towards 4500 m.

3.3 Particulate ²³⁴Th from 2015

Particulate ²³⁴Th from 2015 is shown as the relative amount of particulate ²³⁴Th (Fig. 2E) compared to total ²³⁴Th, calculated from ²³⁸U activities, assuming equilibrium of total ²³⁴Th with ²³⁸U in deep water (Owens et al., 2011). All profiles show rather low concentrations of particulate ²³⁴Th in the Amundsen Basin, especially below 2000 m the Nansen Basins particulate ²³⁴Th is much higher (Valk et al., 2018).

4 Discussion

15

20

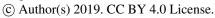

4.1 Temporal evolution of dissolved ²³⁰Th in the Amundsen Basin

Figure 3 shows the range of ²³⁰Th concentrations observed in 2015 and the temporal development since 1991. For the comparison with previous years, only changes exceeding the range of the 2015 dataset for the respective basin are considered as significant temporal developments. As a second criterion, only changes that hold for at least three consecutive data points in a depth profile are considered as a significant temporal change. If two or three stations from 2015 show the same patterns of development, then that is considered a temporal basin wide change.

Temporal changes are manifest over the entire water column since 2007. With one exception, the 2015 concentration range is below 2007 and 1991 (Scholten et al., 1995). This difference is larger than the concentration range for the three 2015 profiles (Fig. 3). The three stations from 2015 (81, 117 and 125) are distributed over a wide area of the Amundsen Basin (Fig. 1). Because all stations show lower concentrations in 2015, this points to a temporal rather than a regional variability over the entire basin. The decrease in dissolved ²³⁰Th in the Amundsen Basin started after 2007, considering the similar concentrations in the years 1991 and 2007. ²³⁰Th is known to respond to particle flux as well as ocean circulation (Anderson et al., 1983b, a). A reduction in dissolved ²³⁰Th concentrations can therefore be caused by either increased scavenging (Anderson et al., 1983b) or by changing circulation (Anderson et al., 1983a).

4.2 Scavenging in the central Amundsen Basin

According to other studies, biological production in the Arctic ocean in 2015 was not higher than in 2007 (Ulfsbo et al., 2014). Therefore, the enhanced biological production in the Amundsen Basin and subsequent sinking particles as a major factor for the observed decrease can be excluded as a reason for the changing Th distributions. Enhanced scavenging by lithogenic material at these stations can also be excluded because for all three stations from 2015, dissolved ²³²Th values at 1000 m are in the same range or lower than observed in 2007 (Fig. 2B). Low dissolved ²³²Th is taken here as an indicator of low amounts of lithogenic material. Enhanced particle loads would result in high concentrations of particulate ²³⁴Th, but only station 125 (2015), located at the slope of the Lomonosov Ridge shows relatively high values of particulate ²³⁴Th in the deep water (Fig. 2E). This feature could be explained by the resuspension of slope sediments along the Lomonosov Ridge, as no increased scavenging was observed in the deep Amundsen Basin (Slagter et al., 2017). Slagter et al. (2017) argue that similar riverine surface influence of humic substances in the Amundsen Basin and in the Makarov Basin did not lead to increased scavenging

at depth in the Amundsen Basin, even at stations influenced by the TPD (e.g. station 125) (Slagter et al., 2017; Rutgers van der Loeff et al., 2018). This is in contrast to the Makarov Basin, where they observed a slight increase of dissolved Fe-binding organic ligand concentrations, and reduced dissolved Fe concentrations may point to more intense scavenging or lower Fe inputs (Slagter et al., 2017; Klunder et al., 2012). In addition, the high ²³²Th observed at the surface of station 125 points to a notable continental component (Fig 2B), a signal that is not observed below (Fig. 2B). Hence, our observations are consistent with Slagter et al. (2017). To summarize, dissolved ²³²Th did generally not increase since 2007, except for station 117 at 2000 m and station 81 at 3500 m. Recent studies about Ra isotopes, Fe binding ligands, NCP estimates and the particulate data (²³⁴Th, ²³²Th) do not point at enhanced particle fluxes in the central Amundsen Basin. Therefore, and putting all these different parameters together, it can be concluded that scavenging of ²³⁰Th within the Amundsen Basin is unlikely to be the primary factor for the observed reduction between 2007 and 2015 in the Amundsen Basin.

4.3 500-1500 m: Intermediate Water mass changes

The decrease of dissolved ²³⁰Th at depths between 500 m and 1500 m for stations 81, 117 and 125 in the Amundsen Basin (2015) is most prominent at 1000 m, where concentrations decreased to half of the value in 2007 (Fig. 3). This depth range in the Amundsen Basin is ventilated on considerably shorter time scales than in the Nansen and Makarov Basin by a westward boundary circulation (Tanhua et al., 2009).

The drop in dissolved ²³⁰Th at 1000 m corresponds to an increase in the ¹²⁹L/²³⁶U ratio (Figure 4), implying a higher Atlantic influence of younger waters (Casacuberta et al., 2018), which in turn is in agreement with an increase in the circulation/ventilation rate between 750 and 1500 m. For station 81, in the central Amundsen Basin, Rutgers van der Loeff et al. (2018) estimated a ventilation age based on SF₆ data of 15-18 years at 1000 m. This estimate fits to time scales based on ²²⁸Ra data and is supported independently by the ¹²⁹I/²³⁶U ratio (Rutgers van der Loeff et al., 2018). While anthropogenic radionuclides (Fig. 4) imply exchange with young shelf waters of Atlantic influence, it is unclear to what extent the change in ²³⁰Th may be caused by exchange with the Makarov Basin. Tanhua et al. (2009) found notable changes in CFC tracer ages at the North Pole, indicating older waters in 1994 compared to 1991 and 2005 at 400 m; a change that was also documented in silicate concentrations (Tanhua et al., 2009). This feature probably reflected a shift in the front of Eurasian and Canada Basin water around the year 1994, with Canadian Basin water penetrating deeper into the central Amundsen Basin (Tanhua et al., 2009). Unfortunately, there is no ²³⁰Th data from this phase of penetration of Canada Basin water around 1994. If the ²³⁰Th data from 1991 are connected to CFC data from the same year, while the ²³⁰Th data from 2007 are connected to CFC data of 2005 (Tanhua et al., 2009) they are both representative of periods of low intrusion of Canada Basin water over the Lomonosov Ridge. Renewed intrusion of Canada Basin water with higher dissolved ²³⁰Th concentrations in 2015 can be excluded as mechanism for the observed change in ²³⁰Th because this would increase rather than decrease dissolved ²³⁰Th concentrations in the Amundsen Basin (Scholten et al., 1995; Edmonds et al., 2004; this study). Moreover, intrusion of Canada Basin water would not match the ventilation age estimated by Rutgers van der Loeff et al. (2018), since the Canada Basin water is known to be much older than Amundsen Basin water at this depth (Tanhua et al., 2009). Hence, it is suggested that the changes in the

Amundsen Basin cannot be explained by interaction with the Makarov Basin. On the contrary, salinity distributions imply that the influence of Atlantic waters in the Amundsen Basin has increased at 500-1500 m by 2015. Figure 2D shows salinity for three stations from the Amundsen Basin from 2007 (Schauer and Wisotzki, 2010), three from 2015 (Rabe et al., 2016), one from 1994 (Swift, 2006a) and one from 1991 (Rudels, 2010). In this depth interval the water masses shifted to notably higher salinities in 2015, indicating that water masses have changed after 2007 (Fig. 2D). In 2015, the intermediate waters of the Amundsen Basin have a stronger Atlantic contribution (Polyakov et al., 2017; Rabe et al., 2016). This change is correlated with the decrease in dissolved ²³⁰Th.

Anthropogenic tracers can help determine whether the increased Atlantic water contribution had resulted in increased ventilation rates of the intermediate waters in the Amundsen Basin. A comparison of CFC and SF₆ ages between 2005 and 2015 (Fig. 5) shows that both the FSBW (approx. 425m) and the BSBW (approx. 1025m) ventilation age did not decrease after 2005. SF₆ age for the Atlantic Water (BSBW around 1000 m) at the northern end of the section in figure 5 is 12-15 years in 2005 and 15-18 years in 2015, suggesting perhaps a slowdown of transport of Atlantic Water in the boundary current. That would indicate that a change in scavenging along the flow path of the Atlantic water is responsible for the observed decrease in dissolved ²³⁰Th, rather than a change in ventilation.

5 4.4 ²³⁰Th removal process in intermediate waters on circulation pathways

In order to judge the scavenging intensity it is useful to compare dissolved ²³⁰Th concentrations at various locations along the flow paths of the Atlantic waters. Arctic Intermediate Water (AIW) is comprised of water from the Greenland Sea and the Nordic Sea via the West Spitzbergen Current (WSC) (Rudels, 2009). In the North East Atlantic at 25°N (GEOTRACES section GA03_W, station 20), dissolved ²³⁰Th concentrations are 8.23 fg/kg at 1000 m water depth at and 13.17 fg/kg at 1500 m (Hayes et al., 2015) (Fig. 6). At 55°N, dissolved ²³⁰Th concentrations in 1995 were 3.47 fg/kg at 500 m and 6.8 fg/kg at 1625 m (Vogler et al., 1998) (station L3). In the Norwegian Sea, dissolved ²³⁰Th concentrations in 1993 were 5.81 fg/kg at 872 m and 7.04 fg/kg at 1286 m (Moran et al., 1995) (station 13). These values are above the highest value of dissolved ²³⁰Th at 1000 m in the Amundsen Basin in 2015 (5 fg/kg). That means that these waters have lost ²³⁰Th during their transit to the central Amundsen Basin, through the productive North Atlantic, the Fram Strait (FSBW) and over the Barents Sea shelf (BSBW). These pathways are influenced by an increased input of terrestrial matter (Günther et al., 2013) and/or increased primary production at the shelf and the ice edge (Arrigo and van Dijken, 2015; Ulfsbo et al., 2018). Relatively high concentrations of

At station 400, located at the south eastern margin of the Eurasian Basin, the deep water is in the influence of BSBW, downstream of the Barents and Kara Sea shelf and slope. At the largest depth of ~1200m, ²³⁰Th concentration are low and similar to concentrations in the central Amundsen Basin in 2015. This is consistent with the hypothesis that Atlantic waters that were depleted in ²³⁰Th on the shelf contribute to the decrease in dissolved ²³⁰Th in the central Amundsen Basin. Such a relic scavenging signal implies that scavenging occurs on pathways of inflow waters along the shelves rather than locally

Fe indicate the possibility of enhanced scavenging by iron oxides (Rijkenberg et al., 2018).

© Author(s) 2019. CC BY 4.0 License.

within the central basin. The high surface values of dissolved ²³⁰Th at station 400 are in line with low export production at this station compared to shallower stations over the shelf (Cai et al. 2010).

Hence, the observed reduction in dissolved ²³⁰Th in the intermediate water of the Amundsen Basin is attributed to a combination of scavenging and advection. Scavenging takes place locally on the shelves and along the slopes of the Barents, Kara and Laptev Seas, causing the removal of ²³⁰Th observed downstream in the central Amundsen Basin. Figure 6 shows pathways of intermediate waters and dissolved ²³⁰Th profiles from 2015, illustrating the mechanism controlling the relatively low dissolved ²³⁰Th concentrations observed in the central Amundsen Basin. Atlantic waters flowing over the Barents and Kara shelves lose ²³⁰Th by increased scavenging. ²³⁰Th depleted BSBW is subducted and gradually mixes with deeper Atlantic inflow. The closer the stations are to the Lomonosov Ridge, the younger the ventilation age (Fig. 5), and the more the salinities are shifted towards Atlantic values. Variability in temperature and salinity plots indicate that this branch interacts with ambient waters (Rudels et al., 1994). This is consistent with dissolved ²³⁰Th concentrations observed at stations 81, 117 and 125 (2015), with station 125, located in the TPD and closest to the Lomonosov Ridge, showing the lowest concentrations. The low ²³⁰Th concentrations at station 125 may also be affected by additional scavenging due to resuspension on the slope of the Lomonosov Ridge.

4.5 Vertical transport of circulation derived ²³⁰Th scavenging signal and effects in deep waters

Increased input of Atlantic water to the central Amundsen Basin has a lower dissolved ²³⁰Th in that depth range, due to increased scavenging during transport over the shelves and along the slope. These time series data also reveal changing conditions below the intermediate waters, indicated by a decrease of dissolved ²³⁰Th in the deeper water column (Fig. 3).

This raises the question as to whether a change, as observed for 500-1500 m, might cause a decrease in concentrations in the water column below that depth within just 8 years. Theoretically, such a decreasing signal could be manifest by sinking particles via reversible scavenging of sinking particles. With particle settling rates of 582 m/y (Rutgers van der Loeff et al., 2018) an average particle needs approximately six years from the depth of strongest depletion (1000 m) to reach the bottom of the water column. That would match the time scale of the decrease in ²³⁰Th observed between 2007 and 2015. The time for particle transport to depth is the limiting step, because the time scale for particle settling is longer than for adsorption and desorption of thorium (Rutgers van der Loeff et al., 2018). On the basis of these parameters, Rutgers van der Loeff et al. (2018) created a model to illustrate the growth of ²²⁸Ra and ²²⁸Th over time. This model is modified here to simulate how the full water column profile of dissolved ²³⁰Th in the Amundsen Basin reacts to a sudden change in circulation transport of water with low ²³⁰Th into the intermediate depth layer. The model results in figure 7 show how fast a decrease of ²³⁰Th in the ventilated layer (500-1500 m) is propagated into the deep water. This underpins the notion of a dissolved ²³⁰Th decrease due to circulation and scavenging along the circulation pathways, and accounts for the reduction of dissolved ²³⁰Th below the circulation influence within a time scale of 8 years. This temporal change can therefore be explained by a significant reduction in the input of low-²³⁰Th waters from shallower depths, even if the scavenging rate in the deep basin remains constant.

© Author(s) 2019. CC BY 4.0 License.

Hydrothermal plumes released by volcanoes at the Gakkel Ridge could also decrease dissolved ²³⁰Th efficiently and periodically, as suggested by Valk et al. (2018) for the deep Nansen Basin. However, these plumes probably do not affect the Amundsen Basin as much as the Nansen Basin, due to recirculation in the Nansen Basin that retains most of the hydrothermal plume affected waters in the Nansen Basin (Valk et al., 2018). Additionally, the depths where the major changes occurred in the Amundsen Basin are too low (the hydrothermal scavenging starts below 2000 m) and the deep water decrease of dissolved ²³⁰Th in the Amundsen Basin since 2007 is much weaker than in the Nansen Basin (Valk et al., 2018).

4.6 Development of dissolved ²³⁰Th Makarov Basin

The change of water masses in the Amundsen Basin after 2007 could also be a result of similar changes in the Makarov Basin. Dissolved ²³⁰Th from the Makarov Basin and temporal series are shown in figures 2C and 8, respectively. In the central Makarov Basin water mass developments are different than in the Amundsen Basin, here both salinities (above 2000 m) and dissolved ²³⁰Th (above 1000 m) have slightly decreased since 2007 (Figure 2F). Hence the circulation changes from the Amundsen Basin did not affect directly the Makarov Basin. Theoretically, the intermediate waters of 2007 from the Amundsen Basin could have been flushed into the Makarov Basin and subsequently decreased dissolved ²³⁰Th concentrations by mixing. The decrease of dissolved ²³⁰Th in the intermediate waters of the Makarov Basin could also result from a stronger scavenging in the Pacific water source waters. Pacific waters enter the Arctic Ocean through the Bering Strait and undergo scavenging in the relatively high particle flux areas of the Chukchi Shelf (Vieira et al., 2018) and East Siberian Sea. These waters could reduce dissolved ²³⁰Th concentrations in the uppermost layers of the Makarov Basin and subsequently affect deeper layers by subduction and settling particles, very similar to the scavenging process described above for the Atlantic source waters of the intermediate waters in the Amundsen Basin. Alternatively, the change can be related to other circulation changes in the Amerasian Basin for which Grenier et al. (submitted) finds evidence. These data will be discussed in Grenier et al. (submitted) in detail in the context of historical and new ²³⁰Th data from the Canada Basin.

5. Conclusion

Concentrations of dissolved ²³⁰Th throughout the entire water column in the Amundsen Basin decreased since 2007. There is no indication of increased scavenging removal of ²³⁰Th due to particle export within the Amundsen Basin. An increase in salinity of intermediate water (at 500 - 1500m) points to the influence of Atlantic derived waters, though SF₆ data suggest ventilation of this layer has not increased. The reduction in dissolved ²³⁰Th concentration in Amundsen Basin intermediate waters is therefore attributed to increased scavenging from source waters and transport of this relict scavenging signature by advection. Thus, these downstream waters reflect a scavenging history over the Siberian shelves and slope that results in a reduction of ²³⁰Th relative to Atlantic source waters and, in turn, reduced dissolved ²³⁰Th in the central Amundsen Basin. The low-²³⁰Th signal is propagated to deeper central Arctic Ocean waters by reversible scavenging. A similar reduction of ²³⁰Th in the Makarov Basin may be related to increased scavenging over the Chukchi and East Siberian shelves. These findings

highlight the close interaction of horizontal transport by advection and particle scavenging removal, which combine to generate far-field distributions of reactive trace elements.

References

5

- Aagaard, K., Coachman, L. K., and Carmack, E. C.: On the halocline of the Arctic Ocean*, Deep-Sea Research 1, 28A, 529-545, 1980.
- Aagaard, K.: On the deep circulation in the Arctic Ocean, Deep Sea Research Part A. Oceanographic Research Papers, 28, 251-268, http://dx.doi.org/10.1016/0198-0149(81)90066-2, 1981.
- Aksenov, Y., Ivanov, V. V., Nurser, A. J. G., Bacon, S., Polyakov, I. V., Coward, A. C., Naveira-Garabato, A. C., and Beszczynska-Moeller, A.: The Arctic Circumpolar Boundary Current, Journal of Geophysical Research: Oceans, 116, doi:10.1029/2010JC006637, 2011.
- Anderson, R. F., Bacon, M. P., and Brewer, P. G.: Removal of ²³⁰Th and ²³¹Pa from the open ocean, Earth and Planetary Science Letters, 62, 7-23, 1983a.
 - Anderson, R. F., Bacon, M. P., and Brewer, P. G.: Removal of ²³⁰Th and ²³¹Pa at ocean margins, Earth and Planetary Science Letters, 66, 73-90, 1983b.
 - Anderson, R. F., Fleisher, M. Q., Robinson, L., Edwards, R. L., Hoff, J. A., Moran, S. B., Rutgers van der Loeff, M. M., Thomas, A. L., Roy-Barman, M., and Francois, R.: GEOTRACES intercalibration of ²³⁰Th, ²³¹Pa, and prospects for 10Be, Limnol. Oceanogr.: Methods, 10, 179-213, 2012.
 - Arrigo, K. R., van Dijken, G., and Pabi, S.: Impact of a shrinking Arctic ice cover on marine primary production, Geophysical Research Letters, 35, n/a-n/a, 10.1029/2008GL035028, 2008.
 - Arrigo, K. R., and van Dijken, G. L.: Continued increases in Arctic Ocean primary production, Progress in Oceanography, 136, 60-70, http://dx.doi.org/10.1016/j.pocean.2015.05.002, 2015.
- 20 Bacon, M. P., and Anderson, R. F.: Distribution of Thorium Isotopes Between Dissolved and Particulate Forms in The Deep Sea, Journal of Geophysical Research, 87, 2045-2056, 1982.
 - Bacon, M. P., Huh, C.-A., and Moore, R. M.: Vertical profiles of some natural radionuclides over the Alpha Ridge, Arctic Ocean, Earth and Planetary Science Letters, 95, 15-22, 1989.
- Björk, G., Jakobsson, M., Rudels, B., Swift, J. H., Anderson, L., Darby, D. A., Backman, J., Coakley, B., Winsor, P., Polyak,
 L., and Edwards, M.: Bathymetry and deep-water exchange across the central Lomonosov Ridge at 88–89°N, Deep Sea Research Part I: Oceanographic Research Papers, 54, 1197-1208, http://dx.doi.org/10.1016/j.dsr.2007.05.010, 2007.
- Björk, G., Anderson, L. G., Jakobsson, M., Antony, D., Eriksson, B., Eriksson, P. B., Hell, B., Hjalmarsson, S., Janzen, T., Jutterström, S., Linders, J., Löwemark, L., Marcussen, C., Anders Olsson, K., Rudels, B., Sellén, E., and Sølvsten,
 M.: Flow of Canadian basin deep water in the Western Eurasian Basin of the Arctic Ocean, Deep Sea Research Part I: Oceanographic Research Papers, 57, 577-586, http://dx.doi.org/10.1016/j.dsr.2010.01.006, 2010.

5

20

25

- Boetius, A., Albrecht, S., Bakker, K., Bienhold, C., Felden, J., Fernández-Méndez, M., Hendricks, S., Katlein, C., Lalande, C., Krumpen, T., Nicolaus, M., Peeken, I., Rabe, B., Rogacheva, A., Rybakova, E., Somavilla, R., and Wenzhöfer, F.: Export of Algal Biomass from the Melting Arctic Sea Ice, Science, 339, 2013.
- Cai, P., Rutgers van der Loeff, M. M., Stimac, I., Nöthig, E.-M., Lepore, K., and Moran, S. B.: Low export flux of particulate organic carbon in the central Arctic Ocean as revealed by ²³⁴Th:²³⁸U disequilibrium, Journal of Geophysical Research, 115, 2010.
- Casacuberta, N., Christl, M., Vockenhuber, C., Wefing, A.-M., Wacker, L., Masqué, P., Synal, H.-A., and Rutgers van der Loeff, M.: Tracing the Three Atlantic Branches Entering the Arctic Ocean With ¹²⁹I and ²³⁶U, Journal of Geophysical Research: Oceans, 0, doi:10.1029/2018JC014168, 2018.
- 10 Clark, D. L., and Hanson, A.: Central Arctic Ocean Sediment Texture: A Key to Ice Transport Mechanisms, in: Glacial-Marine Sedimentation, edited by: Molnia, B. F., Springer US, Boston, MA, 301-330, 1983.
 - Cochran, K., J., H. D., Livingston, H. D., Buesseler, K. O., and Key, R. M.: Natural and anthropogenic radionuclide distributions in the Nansen Basin, Artic Ocean: Scavenging rates and circulation timescales, Deep-Sea Research II, 42, 1495-1517, 1995.
- Edmonds, H. N., Moran, S. B., Hoff, J. A., Smith, J. R., and Edwards, R. L.: Protactinium-231 and Thorium-230 Abundances and High Scavenging Rates in the Western Arctic Ocean, Science, 280, 405-406, 1998.
 - Edmonds, H. N., Moran, S. B., Cheng, H., and Edwards, R. L.: ²³⁰Th and ²³¹Pa in the Arctic Ocean: implications for particle fluxes and basin-scale Th/Pa fractionation, Earth and Planetary Science Letters, 227, 155-167, 2004.
 - Günther, F., Overduin, P. P., Sandakov, A. V., Grosse, G., and Grigoriev, M. N.: Short- and long-term thermo-erosion of icerich permafrost coasts in the Laptev Sea region, Biogeosciences, 10, 4297-4318, 10.5194/bg-10-4297-2013, 2013.
 - Hansen, R. G., Ring, E. J., Council for Mineral, T., and Analytical Chemistry, D.: The preparation and certification of a uranium reference material, Council for Mineral Technology, Randburg, South Africa, 1983.
 - Hayes, C. T., Anderson, R. F., Fleisher, M. Q., Vivancos, S. M., Lam, P. J., Ohnemus, D. C., Huang, K.-F., Robinson, L., Lu, Y., Cheng, H., Edwards, R. L., and Moran, S. B.: Intensity of Th and Pa scavenging partitioned by particle chemistry in the North Atlantic Ocean, Marine Chemistry, 170, 49-60, 2015.
 - Hill, V., Ardyna, M., Lee, S. H., and Varela, D. E.: Decadal trends in phytoplankton production in the Pacific Arctic Region from 1950 to 2012, Deep Sea Research Part II: Topical Studies in Oceanography, https://doi.org/10.1016/j.dsr2.2016.12.015, 2017.
 - Hoffmann, S. S., McManus, J. F., Curry, W. B., and Brown-Leger, S. L.: Persistent export of ²³¹Pa from the deep central Arctic Ocean over the past 35,000 years, Nature, 497, 603-607, 2013.
 - Hsieh, Y.-T., Henderson, G. M., and Thomas, A. L.: Combining seawater 232Th and 230Th concentrations to determine dust fluxes to the surface ocean, Earth and Planetary Science Letters, 312, 280-290, 2011.
 - Jones, E. P., Rudels, B., and Anderson, L. G.: Deep waters of the Arctic Ocean: origins and circulation, Deep-Sea Research 1, 42, 737-760, 1995.

10

15

20

25

- Kanzow, T; von Appen, W-J; Schaffer, J et al. (2017): Physical oceanography measured with CTD/Large volume Watersampler-system during POLARSTERN cruise PS100 (ARK-XXX/2)
- Karcher, M., Smith, J. N., Kauker, F., Gerdes, R., and Smethie Jr., W. M.: Recent changes in Arctic Ocean circulation revealed by iodine-129 observations and modeling, Journal of Geophysical Research, 117, 2012.
- 5 Kipp, L. E., Charette, M. A., Moore, W. S., Henderson, P. B., and Rigor, I. G.: Increased fluxes of shelf-derived materials to the central Arctic Ocean, Science Advances, 4, 10.1126/sciadv.aao1302, 2018.
 - Lien, V. S., and Trofimov, A. G.: Formation of Barents Sea Branch Water in the north-eastern Barents Sea, Polar Research, 32, 18905, 10.3402/polar.v32i0.18905, 2013.
 - Middag, R., de Baar, H. J. W., Laan, P., and Bakker, K.: Dissolved aluminium and the silicon cycle in the Arctic Ocean, Marine Chemistry, 115, 176-195, http://dx.doi.org/10.1016/j.marchem.2009.08.002, 2009.
 - Moran, S. B., Hoff, J. A., Buesseler, K. O., and Edwards, R. L.: High precision 230Th and 232Th in the Norwegian Sea and Denmark by thermal ionization mass spectrometry, Geophysical Research Letters, 22, 2589-2592, 10.1029/95GL02652, 1995.
 - Moran, S. B., and Smith, J. N.: 234Th as a tracer of scavenging and particle export in the Beaufort Sea, Continental Shelf Research, 20, 153-167, https://doi.org/10.1016/S0278-4343(99)00065-5, 2000.
 - Moran, S. B., Shen, C.-C., Edwards, R. L., Edmonds, H. N., Scholten, J. C., Smith, J. N., and Ku, T.-L.: ²³¹Pa and ²³⁰Th in surface sediments of the Arctic Ocean: Implications for ²³¹Pa/²³⁰Th fractionation, boundary scavenging, and advective export, Earth and Planetary Science Letters, 234, 235-248, 2005.
 - Nozaki, Y., Horibe, Y., and Tsubota, H.: The water column distributions of thorium isotopes in the western North Pacific, Earth and Planetary Science Letters, 54, 203-216, http://dx.doi.org/10.1016/0012-821X(81)90004-2, 1981.
 - Pabi, S., van Dijken, G. L., and Arrigo, K. R.: Primary production in the Arctic Ocean, 1998–2006, Journal of Geophysical Research: Oceans, 113, doi:10.1029/2007JC004578, 2008.
 - Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T., Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., and Yulin, A.: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean, Science, 356, 285-291, 10.1126/science.aai8204, 2017.
 - Owens, S. A., K. O. Buesseler, and K. W. W. Sims (2011), Re-evaluating the ²³⁸U-salinity relationship in seawater: Implications for the ²³⁸U–²³⁴Th disequilibrium method, Marine Chemistry, 127(1), 31-39.
- Rabe, B., Karcher, M., Kauker, F., Schauer, U., Toole, J. M., Krishfield, R. A., Pisarev, S., Kikuchi, T., and Su, J.: Arctic Ocean basin liquid freshwater storage trend 1992–2012, Geophysical Research Letters, 41, 961-968, 10.1002/2013GL058121, 2014.
 - Rabe, B.; Schauer, U., Ober, S., Horn, M., Hoppmann, M., Korhonen, M., Pisarev, S., Hampe, H., Villacieros, N., Savy, J.P., Wisotzki, A. (2016): Physical oceanography during POLARSTERN cruise PS94 (ARK-XXIX/3). Alfred Wegener

- Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.org/10.1594/PANGAEA.859558
- Rempfer, J., Stocker, T. F., Joos, F., Lippold, J., and Jaccard, S. L.: New insights into cycling of ²³¹Pa and ²³⁰Th in the Atlantic Ocean, Earth and Planetary Science Letters, 468, 27-37, http://dx.doi.org/10.1016/j.epsl.2017.03.027, 2017.
- 5 Rijkenberg, M. J. A., Slagter, H. A., Rutgers van der Loeff, M., van Ooijen, J., and Gerringa, L. J. A.: Dissolved Fe in the Deep and Upper Arctic Ocean With a Focus on Fe Limitation in the Nansen Basin, Frontiers in Marine Science, 5, 10.3389/fmars.2018.00088, 2018.
 - Roy-Barman, M.: Modelling the effect of boundary scavenging on Thorium and Protactinium profiles in the ocean, Biogeosciences, 6, 3091-3107, 2009.
- 10 Rudels, B., Jones, E. P., Anderson, L. G., and Kattner, G.: On the Intermediate Depth Waters of the Arctic Ocean, in: The Polar Oceans and Their Role in Shaping the Global Environment, edited by: Johannessen, O. M., Muench, R. D., and Overland, J. E., 1994.
 - Rudels, B.: Arctic Ocean Circulation A2 Steele, John H, in: Encyclopedia of Ocean Sciences (Second Edition), Academic Press, Oxford, 211-225, 2009.
- Rudels, B.: Arctic Ocean circulation and variability advection and external forcing encounter constraints and local processes, Ocean Science, 8, 261-286, 2012.
 - Rudels, B., Korhonen, M., Budéus, G., Beszczynska-Möller, A., Schauer, U., Nummelin, A., Quadfasel, D., and Valdimarsson, H.: The East Greenland Current and its impacts on the Nordic Seas: observed trends in the past decade, ICES Journal of Marine Science, 69(5), 841-851, 2012.
- 20 Rudels, B., Schauer, U., Björk, G., Korhonen, M., Pisarev, S., Rabe, B., and Wistotzki, A.: Observations of water masses and circulation with focus on the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s, Ocean Science 9, 147-169, 2013.
 - Rudels, B., Korhonen, M., Schauer, U., Pisarev, S., Rabe, B., and Wisotzki, A.: Circulation and transformation of Atlantic water in the Eurasian Basin and the contribution of the Fram Strait inflow branch to the Arctic Ocean heat budget, Progress in Oceanography, 132, 128-152, http://dx.doi.org/10.1016/j.pocean.2014.04.003, 2015.
 - Rutgers van der Loeff, M., Kipp, L., Charette, M. A., Moore, W. S., Black, E., Stimac, I., Charkin, A., Bauch, D., Valk, O., Karcher, M., Krumpen, T., Casacuberta, N., Smethie, W., and Rember, R.: Radium Isotopes Across the Arctic Ocean Show Time Scales of Water Mass Ventilation and Increasing Shelf Inputs, Journal of Geophysical Research: Oceans, 0, doi:10.1029/2018JC013888, 2018.
- 30 Rutgers van der Loeff, M. M., and Berger, G. W.: Scavenging of ²³⁰Th and ²³¹Pa near the Antarctic Polar Front in the South Atlantic, Deep-Sea Research 1, 40, 339-357, 1993.
 - Rutgers van der Loeff, M. M., Key, R. M., Scholten, J., Bauch, D., and Michel, A.: ²²⁸Ra as a tracer for shelf water in the Arctic Ocean, Deep-Sea Research II, 42, 1533-1553, 1995.

5

- Scholten, J. C., Rutgers van der Loeff, M. M., and Michel, A.: Distribution of ²³⁰Th and ²³¹Pa in the water column in relation to the ventilation of the deep Arctic basins, Deep-Sea Research II, 42, 1519-1531, 1995.
- Schuur, E. A. G., Abbott, B. W., Bowden, W. B., Brovkin, V., Camill, P., Canadell, J. G., Chanton, J. P., Chapin, F. S., Christensen, T. R., Ciais, P., Crosby, B. T., Czimczik, C. I., Grosse, G., Harden, J., Hayes, D. J., Hugelius, G., Jastrow, J. D., Jones, J. B., Kleinen, T., Koven, C. D., Krinner, G., Kuhry, P., Lawrence, D. M., McGuire, A. D., Natali, S. M., O'Donnell, J. A., Ping, C. L., Riley, W. J., Rinke, A., Romanovsky, V. E., Sannel, A. B. K., Schädel, C., Schaefer, K., Sky, J., Subin, Z. M., Tarnocai, C., Turetsky, M. R., Waldrop, M. P., Walter Anthony, K. M., Wickland, K. P., Wilson, C. J., and Zimov, S. A.: Expert assessment of vulnerability of permafrost carbon to climate change, Climatic Change, 119, 359-374, 10.1007/s10584-013-0730-7, 2013.
- 10 Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, W. J., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback, Nature, 520, 171-179, 2015.
 - Serreze, M. C., and Stroeve, J.: Arctic sea ice trends, variability and implications for seasonal ice forecasting, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 10.1098/rsta.2014.0159, 2015.
 - Serreze, M. C., Stroeve, J., Barrett, A. P., and Boisvert, L. N.: Summer atmospheric circulation anomalies over the Arctic Ocean and their influences on September sea ice extent: A cautionary tale, Journal of Geophysical Research: Atmospheres, 121, 11,463-411,485, doi:10.1002/2016JD025161, 2016.
- Shen, C.-C., Cheng, H., Edwards, R. L., Moran, S. B., Edmonds, H. N., Hoff, J. A., and Thomas, R. B.: Measurement of
 Attogram Quantities of 231Pa in Dissolved and Particulate Fractions of Seawater by Isotope Dilution Thermal
 Ionization Mass Spectroscopy, Analytical Chemistry, 75, 1075-1079, 10.1021/ac026247r, 2003.
 - Slagter, H. A., Reader, H. E., Rijkenberg, M. J. A., Rutgers van der Loeff, M., de Baar, H. J. W., and Gerringa, L. J. A.: Organic Fe speciation in the Eurasian Basins of the Arctic Ocean and its relation to terrestrial DOM, Marine Chemistry, 197, 11-25, https://doi.org/10.1016/j.marchem.2017.10.005, 2017.
- Swift, J. (2006): Physical oceanography at CTD station AOS94/35-1. Scripps Institution of Oceanography, UC San Diego, PANGAEA, https://doi.org/10.1594/PANGAEA.476073
 - Swift, J. (2006): Physical oceanography at CTD station AOS94/25-1. Scripps Institution of Oceanography, UC San Diego, PANGAEA, https://doi.org/10.1594/PANGAEA.476051
- Tanhua, T., Jones, E. P., Jeansson, E., Jutterström, S., Smethie, W. M., Wallace, D. W. R., and Anderson, L. G.: Ventilation of the Arctic Ocean: Mean ages and inventories of anthropogenic CO₂ and CFC-11, Journal of Geophysical Research: Oceans, 114, n/a-n/a, 10.1029/2008JC004868, 2009.
 - Trimble, S. M., Baskaran, M., and Porcelli, D.: Scavenging of thorium isotopes in the Canada Basin of the Arctic Ocean, Earth and Planetary Science Letters, 222, 915-932, 2004.

5

15

- Ulfsbo, A., Cassar, N., Korhonen, M., van Heuven, S., Hoppema, M., Kattner, G., and Anderson, L. G.: Late summer net community production in the central Arctic Ocean using multiple approaches, Global Biogeochemical Cycles, 28, 1129-1148, 10.1002/2014GB004833, 2014.
- Ulfsbo, A., Jones, E. M., Casacuberta, N., Korhonen, M., Rabe, B., Karcher, M., and van Heuven, S. M. A. C.: Rapid changes in anthropogenic carbon storage and ocean acidification in the intermediate layers of the Eurasian Arctic Ocean: 1996-2015, Global Biogeochemical Cycles, 0, doi:10.1029/2017GB005738, 2018.
- Valk, O., Rutgers van der Loeff, M. M., Geibert, W., Gdaniec, S., Rijkenberg, M. J. A., Moran, S. B., Lepore, K., Edwards, R. L., Lu, Y., and Puigcorbé, V.: Importance of Hydrothermal Vents in Scavenging Removal of ²³⁰Th in the Nansen Basin, Geophysical Research Letters, 0, doi:10.1029/2018GL079829, 2018.
- Vieira, L. H., Achterberg, E. P., Scholten, J., Beck, A. J., Liebetrau, V., Mills, M. M., and Arrigo, K. R.: Benthic fluxes of trace metals in the Chukchi Sea and their transport into the Arctic Ocean, Marine Chemistry, https://doi.org/10.1016/j.marchem.2018.11.001, 2018.
 - Vogler, S., Scholten, J., Rutgers van der Loeff, M., and Mangini, A.: ²³⁰Th in the eastern North Atlantic: the importance of water mass ventilation in the balance of 230Th, Earth and Planetary Science Letters, 156, 61-74, http://dx.doi.org/10.1016/S0012-821X(98)00011-9, 1998.
 - Wang, Q., Wekerle, C., Danilov, S., Koldunov, N., Sidorenko, D., Sein, D., Rabe, B., and Jung, T.: Arctic Sea Ice Decline Significantly Contributed to the Unprecedented Liquid Freshwater Accumulation in the Beaufort Gyre of the Arctic Ocean, Geophysical Research Letters, 45, 4956-4964, doi:10.1029/2018GL077901, 2018.
 - Wheeler, P. A., Watkins, J. M., and Hansing, R. L.: Nutrients, organic carbon and organic nitrogen in the upper water column of the Arctic Ocean: implications for the sources of dissolved organic carbon, Deep Sea Research Part II: Topical Studies in Oceanography, 44, 1571-1592, http://dx.doi.org/10.1016/S0967-0645(97)00051-9, 1997.
 - Worthington, L. V.: Oceanographic results of project Skijump I and Skijump II in the Polar Sea, 1951–1952, Eos, Transactions American Geophysical Union, 34, 543-551, 10.1029/TR034i004p00543, 1953.

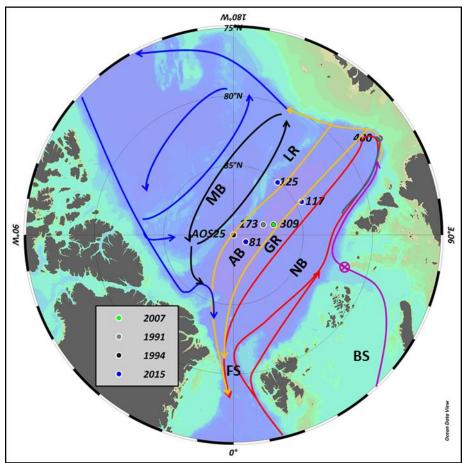


Figure 1: Map of the Arctic Ocean and station overview. AB = Amundsen Basin, NB = Nansen Basin, MB = Makarov Basin. BS = Barents Sea, FS = Fram Strait, LR = Lomonosov Ridge with intermediate water circulation patterns after Rudels (2009). Red is the Atlantic inflow through Fram Strait (FSBW) and return flow through the Nansen Basin; purple is the inflow through the Barents Sea (BSBW). Atlantic layer circulation in the Amundsen Basin (orange), the Makarov Basin (black) and Canada Basin (blue) are indicated as arrows.

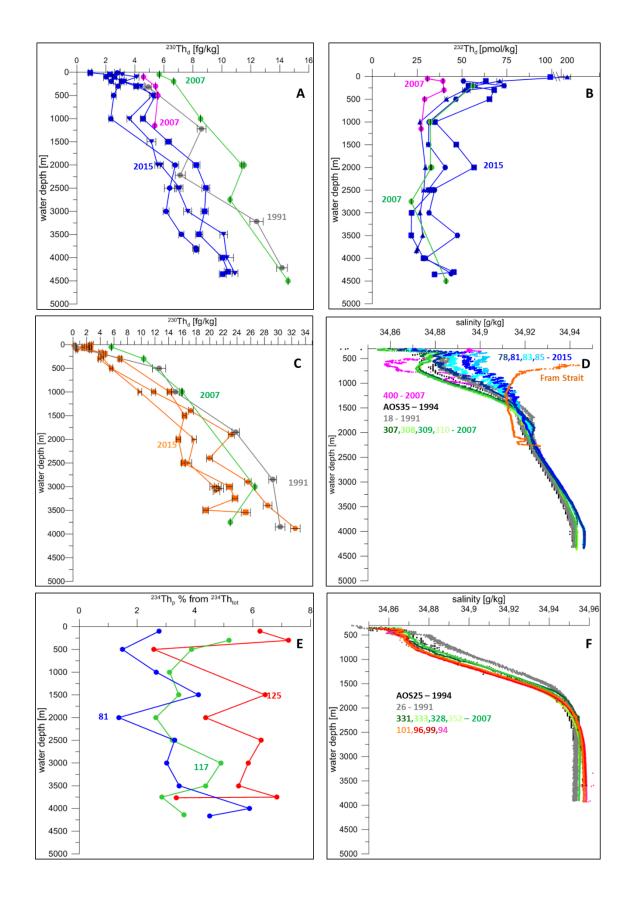


Figure 2: (A) Amundsen Basin dissolved 230 Th from 2015 in blue (81 = dots, 117 = squares, 125 = triangles), 2007 in green (309), and 1991 in grey (173). (B) Dissolved 232 Th from 2015 (81 = dashed, 117 = dashed dotted, 125 = solid) and 2007 (309 = green, 400 = pink). (C) Makarov Basin dissolved 230 Th from 2015 in orange (101 = dots, 96 = squares, 134 = triangles), 2007 in green (328), 1991 in grey (176 (Scholten et al., 1995). (D) Amundsen Basin salinity profiles from 2015 (Rabe et al., 2016), 2007 (Schauer and Wisotzki, 2010), 1991 (Rudels, 2010), 1994 (Swift, 2006a) and Fram Strait 2016 (Kanzow et al., 2017). (E) Particulate 234 Th from 2015 in percent from total 234 Th. (F) Makarov Basin salinity profiles from 2015 (Rabe et al., 2016), 2007 (Schauer and Wisotzki, 2010), 1994 (Swift, 2006b) and 1991 (Rudels, 2010).

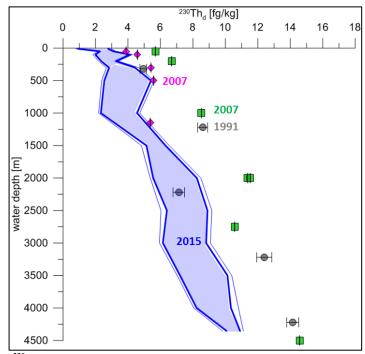


Figure 3: Dissolved ²³⁰Th time series for the Amundsen Basin. Profiles from 2015 are combined to concentration range profiles (blue, this study, stations 81, 117, 125) and compared with data from 2007 (green, this study, station 309) and 1991 (grey, from Scholten et al. (1995) (station 176).

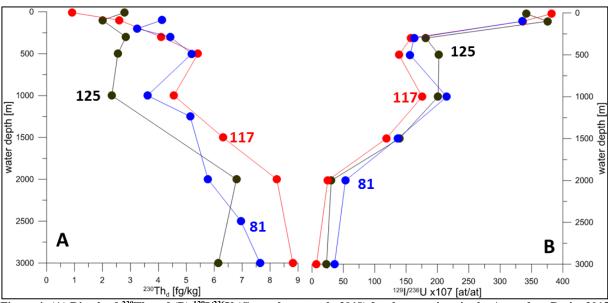
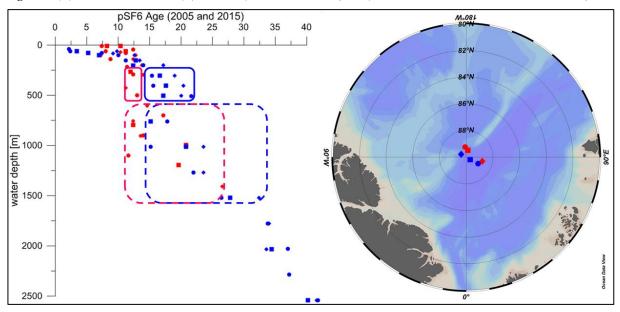



Figure 4: (A) Dissolved ²³⁰Th and (B) ¹²⁹I/²³⁶U (Casacuberta et al., 2018) for three stations in the Amundsen Basin, 2015

5 Figure 5: Comparison of pCFC and pSF₆ ages from 2005 (red) and 2015 (blue) from the Amundsen Basin BSBW and FSBW are located in the return flow along the Lomonosov Ridge (FSBW = solid box, BSBW = dashed box). Locations of 2015 stations are marked in the map as blue symbols (81 = dots, 85 = squares, 89 = diamonds) and 2005 stations in red (41 = dots, 42 = squares, 46 = diamonds).

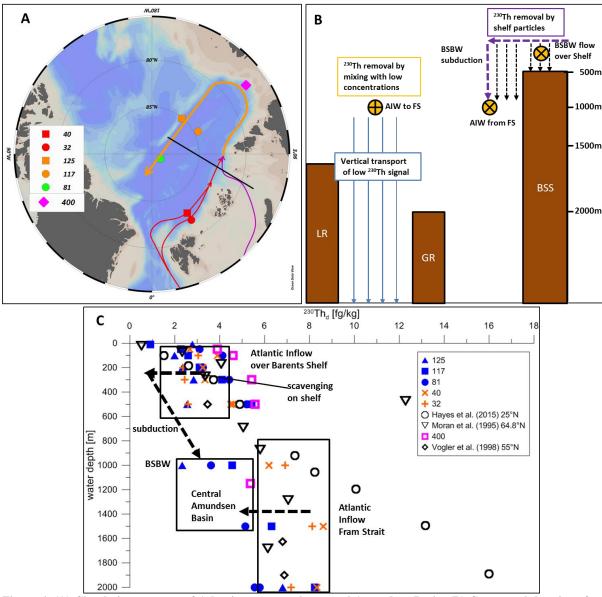


Figure 6: (A) Circulation passages of Atlantic waters to the central Amundsen Basin. (B) Conceptual drawing of scavenging and mixing of water masses close to St Anna Trough (black line in A represents the section of B). LR = Lomonosov Ridge, GR = Gakkel Ridge, BSS = Barents Sea Shelf, FS = Fram Strait). (C) Development of dissolved ²³⁰Th concentrations from the North Atlantic to the Amundsen Basin. Atlantic values: (open symbols, Hayes et al., 2015; Vogler et al., 1998; Moran et al., 1995) represented by a deep box flowing in through Fram Strait and a shallow box with lower activities flowing in over the Barents shelf and exposed to additional scavenging on the shelf (horizontal black arrow) before it is subducted and mixed with deeper Atlantic inflow to form the observed reduced concentrations in the central Amundsen Basin. Stations 32 and 40 (red) are from Gdaniec et al. (submitted).

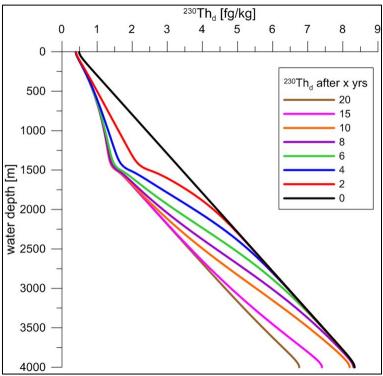


Figure 7: Modeled dissolved 230 Th distribution in the Amundsen Basin, 0, 2, 4, 6, 8, 10, 15, 20 years after reduction of concentration in upper layer (0-1500m) by continuous exchange with 230 Th-free surface water. Model was modified after Rutgers van der Loeff et al. (2018).

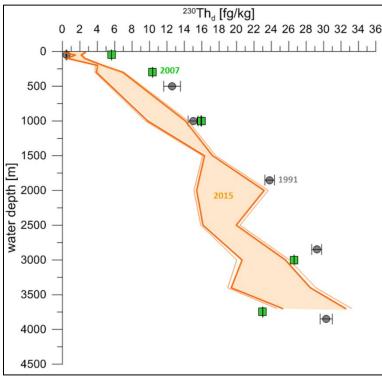


Figure 8: Dissolved ²³⁰Th time series for the Amundsen Basin. Profiles from 2015 are combined to concentration range profiles (blue, this study, stations 81, 117, 125) and compared with data from 2007 (green, this study, station 309) and 1991 (grey, from Scholten et al. (1995) (station 176).